n-type thermoelectric material Mg2Sn0.75Ge0.25 for high power generation.

نویسندگان

  • Weishu Liu
  • Hee Seok Kim
  • Shuo Chen
  • Qing Jie
  • Bing Lv
  • Mengliang Yao
  • Zhensong Ren
  • Cyril P Opeil
  • Stephen Wilson
  • Ching-Wu Chu
  • Zhifeng Ren
چکیده

Thermoelectric power generation is one of the most promising techniques to use the huge amount of waste heat and solar energy. Traditionally, high thermoelectric figure-of-merit, ZT, has been the only parameter pursued for high conversion efficiency. Here, we emphasize that a high power factor (PF) is equivalently important for high power generation, in addition to high efficiency. A new n-type Mg2Sn-based material, Mg2Sn0.75Ge0.25, is a good example to meet the dual requirements in efficiency and output power. It was found that Mg2Sn0.75Ge0.25 has an average ZT of 0.9 and PF of 52 μW⋅cm(-1)⋅K(-2) over the temperature range of 25-450 °C, a peak ZT of 1.4 at 450 °C, and peak PF of 55 μW⋅cm(-1)⋅K(-2) at 350 °C. By using the energy balance of one-dimensional heat flow equation, leg efficiency and output power were calculated with Th = 400 °C and Tc = 50 °C to be of 10.5% and 6.6 W⋅cm(-2) under a temperature gradient of 150 °C⋅mm(-1), respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermoelectric energy conversion using nanostructured materials

High performance thermoelectric materials in a wide range of temperatures are essential to broaden the application spectrum of thermoelectric devices. This paper presents experiments on the power and efficiency characteristics of lowand mid-temperature thermoelectric materials. We show that as long as an appreciable temperature difference can be created over a short thermoelectric leg, good pow...

متن کامل

Development of n-type cobaltocene-encapsulated carbon nanotubes with remarkable thermoelectric property

Direct conversion from heat to electricity is one of the important technologies for a sustainable society since large quantities of energy are wasted as heat. We report the development of a single-walled carbon nanotube (SWNT)-based high conversion efficiency, air-stable and flexible thermoelectric material. We prepared cobaltocene-encapsulated SWNTs (denoted CoCp2@SWNTs) and revealed that the ...

متن کامل

رشد بلور (Bi2Te3)0.96(Bi2Se3)0.04 به روش رشد ناحیه‌ای و بررسی تغییرات شیمیایی ترکیب در راستای رشد

The (Bi2Te3)0.96(Bi2Se3)0.04 is an n-type thermoelectric semiconductor for using in thermoelectric cooling systems. Single crystal of this composition was grown by Zone Melting Method and thermoelectric power (α 2 σ) along the crystal growth where α is the Seebeck coefficient and σ is the electrical conductivity was measured. In this measurement a gradient along length of the prepared crystalli...

متن کامل

Oxide Based Thermoelectric Materials for Large Scale Power Generation

The thermoelectric (TE) devices are based on the Seebeck and Peltier effects, which describe the conversion between temperature gradient and electricity. The effectiveness of the material performance can be described by its figure of merit, ZT, which is defined as ZT = T , where a is the Seebeck coefficient of the material, a is the electrical conductivity and K is the total thermal conductivit...

متن کامل

C3ta11654a 8725..8730

Thermoelectric energy converters are expected to play a signicant role in clean and renewable energy, and to reduce the reliance on fossil fuelled heat engines that generate approximately 90% of the world's electrical power at a typical 30–40% efficiency. The maximum efficiency of thermoelectric materials is determined by the dimensionless gure of merit, zT 1⁄4 STs/(ke + kL), which is a funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 11  شماره 

صفحات  -

تاریخ انتشار 2015